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1. INTRODUCTION

An important problem in turbomachinery is the prediction of
the flutter boundaries of the compressor. 1In order to compute
these boundaries, the unsteady aerodynamic forces need to be
understood. The aerodynamic caﬁées of flutter in a compressor
can be very complex, fdr.gxample, the interaction between the
flows induced by the rotor and stator. However, an important
class of flutter is caused by a relatively simple aerodynamic
flow due to the vibration of the blades on a given compressor row
without the added complexity of exterior interactions. This
latter problem is the simplest unsteady aerodynamic phenomenon of
interest. 1In a compressor the oncoming velocity varies along the
compressor blade, increasing from subsonic speeds at the hub to
perhaps transonic speeds at the tip; it is the prediction of
unsteady transonic flow in a compressor that is the most
difficult. This report is concerned with the prediction of
flutter in a vibrating compressor row when the flow is transonic.

The work reported here is concerned with solving the classic
high frequency unsteady transonic small disturbance equation for
cascade flows. A second topic is.the validation of the cascade
theory of Reference 1.

A major problem with potential theory is that it is not
valid (Reference 2) when shock waves are present and, as a
consequence, shock locations are not predicted adeguately for
medium to strong shock strengths, although the agreement for
flows with weak shocks is acceptable. This disadvantage of the
potential formulation can be overcome by modifying the theory to
give the correct shock jump. This has been done by Nixon
(Reference 3) for the steady transonic small disturbance (TSD)
equation and by Kerlick, Nixon, and Ballhaus (Reference 4) for
the unsteady low frequency equation. An extension of the




work in Reference 4 is reported in Reference 5 which is attached
as Appendix 1.

Most of the numerical methods for predicting unsteady
transonic flow stem from the work of Ballhaus and Goorjian
(Reference 6), who developed an implicit algorithm to solve the
low frequency TSD equation for isolated airfoils. An extension
of this algorithm to high frequency motion was made by Rizzetta
and Chin (Reference 7). For cascade flows a version of the
Rizzetta-Chin algorithm was used by Kerlick and Nixon
(Reference 8) to develop a method for cascade flows for
unstaggered cascades. An alternative to the use of the unsteady
TSD equation has been considered by Verdon and Caspar
(Reference 9) who use a time linearized perturbation of the full
potential equation for staggered and unstaggered cascades in a
subsonic flow.

In a cascade flutter analysis the dominant parameter is the
interblade phase angle which can determine the conditions at
which the blade will flutter. In a numerical method, such as
those discussed earlier, a flutter calculation can involve
computing a test case for each value of the interblade phase
angle. This is computationally expensive and, in order to reduce
the cost, a technique developed by Nixon (Reference 1) may be
used. This technique, which is based on indicial theory,
decouples the cascade problem into a series of elementary
problems, which are parametricaliy related, and only one solution
need be computed. This elementary solution consists of a number
of blades, all stationary with the exception of one blade which
undergoes a step change. Once computed, the full unsteady
solution for any frequency and interblade phase angle can be
constructed by a judicious superposition.




In a previous report (Reference 10) the results obtained by
the cascade code described in Reference 8 and the indicial method
described in Reference 1 are examined. Several areas of concern
arise in this examination. First, for a flat plate at subsonic
conditions, the method of Kerlick and Nixon Reference 8 did not
agree very well with the results.of Verdon and Casper (Reference
9). Second, the indicfa;'method did not give the super-resonance
phenomena noted by Verdon and Casper. It is desirable that these
points be clarified before further work is done. The question of
super-resonance on the indicial method has been answered by
including a (nominally) infinite number of blades in the
cascade. This is done analytically rather than computationally.

In the above studies some questions regarding the far field
boundary conditions used in cascade computations are raised. It
is possible that the differences in the boundary conditions
account for the difference in the flat plate results noted
above. A discussion is given in the text.

In order to compute flows with strong shock waves the
techniques of References 4 and 5 have been incorporated into the
computer code. The details are given in Appendix 1.

The final issue to be addressed in the report is that of
nonunique solutions. It has been known for some years that the
potential equation gives nonunique solutions (References 11, 12)
for isolated airfoils. It is established here that these
solutions also occur for steady cascade flows. For unsteady
flows the unsteady perturbation seems to be unigque although the
perturbation is around an artificial value of lift. These
computations are for a reduced frequency of unity and is in




agreement with the results of Williams et al. (Reference 13) for
isolated airfoils. However, for low frequencies an artificial
behavior is evident for isolated airfoils (Reference 13) and may
occur for cascade flows.

The analyses of Steinhoff and Jameson (Reference 11), Salas
et al. (Reference 12),'and Williams et al. (Reference 13) are
essentially numerical experiments. Nixon (Reference 14) has
attempted a more analytic study of the problem. Reference 14 is
atctached as Appendix 2. In Reference 14 Nixon has shown that for
isolated airfoils there is the possibility of multiple solutions
due to the presence of eigensolutions in the equations. There
does not seem to be any way to avoid these solutions:; in fact it
is indicated that a stable algorithm helps the appearance of the
eigensolutions. In the present work the analysis of Reference 14
is extended to include steady cascade effects. It is found that
the effect of the eigensolutions varies as the inverse square of
the gap. It is likely that for practical cascade flows the
nonunique solutions do not arise.

2., COMMENTS ON THE ACCURACY OF THE NEAR CASCADE CODE

In the previous work on this contract, reported in Reference
10 a discrepancy between the results of the computer code CTRAN,
developed under Contract N00018-81-C-0169, and the code of Verdon
and Casper (Reference 9) for the subsonic flow through a cascade
of flat plates was noted. Since the flat plate is a classical
case this is a disturbing error. Hence some thought has been
given as to the reasons for the disagreement.

For subsonic flows the Verdon and Caspar equation is
equivalent to the small disturbance equation

ﬁ




2cMicosa

2 2 2 .2 2 .
(1-M_cos®8) ¢ . + (1-M_sin 6)4’)’y R ¢ 2 M,81n9C086¢xy
2cMisin% Mic2 (1)
T e Tz et

where 6 is the angle tﬁe.oncoming stream makes with the x-axis.
The equation used by Nixon and Kerlick (References 8 and 10 ) is
the classic, isolated airfoil eguation

2 c
(l-M_) ¢xx + ¢ -2 T M

Yy - ® ¢xt 2 ¢tt =0 (2)

Hence, it can be seen that the Verdon and Caspar equations
include the extra terms due to the y derivatives which are
necessary to model highly curved blades. The boundary conditions
for both equations are that there is no flow through a solid
boundary. For the case of a flat plate at angle of attack a the
boundary condition is '

c_
[

oy(x.t 0) = - a + (x—xo) @y (3)

where x. is some pitching axis.

o

If 6 is small, Equations (1) and (2) become identical. 1In
the comparisons in Reference 10 8 is zero and, thus, the
discrepancy reported cannot be due to the different equations. A
possible cause of the discrepancy may be the different far field
boundary conditions (see Section 3) but this has not been
investigated.

3. FAR FIELD BOUNDARY CONDITIONS

The far field boundary condition used by Verdon and Caspar
is that ¢ has the asymptotic form upstream of the cascade




olx,y) =} by exp(iq;y) exp[(iMwUmaji dj) (x—x_w)/Ozl (4)
] = w—®
where
ay = (2W340)/h, 6= M_(u + U sin 6 a)
2 2.2 2 2

(5)

0 = a M” _(1 - Mi cosze), dj = (qujz— sg)Mia
and a_ is the speed of sound in the undisturbed flow, o is the
interblade phase angle and w is the frequency of oscillation.

x_, denotes the upstream computational boundary and h is the
cascade gap.

The constant b; is given by

]

bj = h-lf:+h ¢(E,n)exp("an)dn (6)

Far upstream of the cascade a specified boundary condition is
that the velocity components are given.

Thus as X + -=

¢{x,n) » U_n sin o (7)
In the limit as h + =, qj + 0 and, from equations (6) and (7)

bj + U_ sin @ (8)
In the study of asymptotic behavior there are two limits that can
be examined as the gap approaches infinity. First, if the point

x_, approaches -« faster than h » « then the effect at x__ will
always be that of a cascade. Second, if the point x__ does not




approach infinity faster than h + « then the behavior at x_, will
be that of an isolated airfoil. Mathematically the first case is
when

ﬁ.m e The # 0 (9)
> ®

while the second case is when

%i? ;Q—ﬁ— =0 » (10)

In the case of an isolated airfoil the classic limit, on
y =0as x +» -» , is (see, for example, Reference 15)

;2 .
o (x,y) » eiMaBX o iKk|x| (11)
(K'x')l/2
where
2 = v/(1-M2) , K = M_a (12)

As x + -» the value of ¢(x,y) given by Equation (1l1) decays as
|x|'1/2 whereas the form given by Equation (4) behaves as

1
) U_ sin 6 exp (i[Min + K) (x-x__)}

j=-1 (13)

and b, + constant as h + =, Note that as h + « the number of
blade gaps must reduce to two with j = £ 1 denoting the far field
blades at n = £ «.

Equation (13) does not give the isolated airfoil result
as h + » if the limit of Equation (10) is imposed. It is
suggested that this limit is the correct one to use for a far
field computational boundary since x__ must be finite to be of

any use.




4. STRONG SHOCK THEORY

In Reference 5 a modification to the unsteady high frequency
small disturbance equation is described which alters the shock
strength to give the Rankine Hugoniot value. These types of
modifications improve the accuracy of the small disturbance
equation. Reference 5 -is attached as Appendix 1.

The theory of Reference 5 has been applied to the cascade
code CTRAN. Since CTRAN and the base code XTRAN?L used in
Reference 5 are similar the mechanics of coding the appropriate
modifications proved to be easy. A detailed description of the
modifications is given in Appendix 1. Typical results for a
cascade are shown in Figures 1 and 2. The "strong shock"”
correction for a cascade is similar to that for isolated airfoil
in that the shock waves are weakened and move forward. The
section is a NACA0012; the amplitude is 1/4°, M_= 0.845 and h =
30. The large gap is used to indicate the effect of the
modification. For more realistic values of the gap the strong
shock modification may prove to be unnecessary because the shock
waves in such conditions are relatively weak anyway unless the
flow is nearly choked.

5. COMMENTS ON THE INDICIAL THEORY FOR CASCADE FLOWS

In Reference 1 a method of computing the unsteady flow
through a cascade for any interblade phase angle using only one
set of computational data is described. The computational data
are calculated for a cascade with only one blade moving and the
others held stationary. A further simplification is that only
the indicial response for the cascade needs be computed; from
this result the flow due to arbitrary time dependent motions can

be constructed. In the previous report on the contract

(Reference 10) attempts to compute the unsteady flow through
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s = A 5 (60)
L (h-ho)

where CL is the value of Cp, as h + =, hgo is some value of h to
be determined and A is a constant.

The computer code XTRAN2L, used for isolated airfoil
problems, was modified to treat a steady cascade by the addition
of periodic boundary conditions. A series of calculations for a
NACA0012 cascade at M_ = 0.845 and « = 0 was performed with
various values of the gap, h. The results are shown in Figure 6.

If the value is h when C; is zero (h = 22) and the value of
Cy, at h = 25 are used to compute ho and A in Equation (60) then
C;, can be computed. This value is also shown in Figure 4 and
agrees very well with the computed results. This good agreement
indicates that the compatibility equation, Equation (55),
represents the behavior of nonunique solutions and that the
general conclusions given in Appendix 2 apply to cascade flows.

6. CONCLUDING REMARKS

A number of points arising from previous work on cascade
flows have been investigated and most have been clarified. There
is still some question as to the correct far field boundary
conditions to apply to unsteady cascade computations. However,
the existence of nonunigue solutions to the potential flow around

cascade has been verified and examined.

~20-




If the gap is large the computationally effective flow field
will be similar to that of an isolated airfoil since u and au
will approach zero as n + =, Conseguently, the main
contribution to the field integral will come only from values of
u up to some distance h from the blades. 1In other words

th ~ Kk
- Jg £(n)an ~ [ f(n)dn (57)
where h is independent of h. Consequently the field integrals in
Equations (55) and (52) can be written, to a first approximation,

as

S =(n) 2, ,.9 42 ~ (a 91 2.2
L fslj Rex 1O¥Ig) ™+ (i) 7198, fslfﬁzx[(91+1fl)z(g1+ ) 1ds

n=0 fl
+ 1 H (x,y) (58)
h2 l ly
and
I, g ax o J AR £1dS) + 2, Ho(x,y) (59)
n=o0 S1 h

where Hy (x,y) and H, (x,y) are independent of h and £y is
similar to the eigensolution for the isolated airfoil. g, and

Ifl are associated with fl‘ S1 is a subset of S1 with a
range 0 < n < h rather than 0 < n < h.

By examining Equations (55), (58) and (59) it can be deduced
that the compatibility equation, Equation (55), is similar to
that of the isolated airfoil case, with the addition of a

perturbation depending on the parameter i From the general

2.
transonic perturbation theory of Referenge 16 it is expected that

the variation of C; in a nonunique solution will vary as 1

h2

If the perturbation parameter is of the form 12 it follows
that the 1lift coefficient for a cascade is of the ?orm

~-19-
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If a function g{x,y) is defined as

£4°) (w0
glx,y) = £,(x,y) - —— (50)
l] - u
o]
Then
Au = g/(ﬁ) {51)

From Equations (42) and (50)

1 -u, _ ¢v1 (n) -
( = ) g = n£04“ jslj ARy, £,9S, = I, (52)
Using Equations (51) and (52) then gives
= g
u-s= (53)
-9 + If
bu = g + Ig (54)

Substitution of Equations (53) and (54) into Eaquation (47) gives

9 -1 (224 g1y =5 - ] L g x‘"’r<g+z )2
g+If 2 If+g f TL n=o 4n S [ f
+ <§%f—) ] ds, (55)

This equation must have a nonzero solution for fn if a nonunique
solution exists.

Consider now the case when the gap is large.
To a first approximation
Uy (xy) = U0y + L D (56)

Ty, L h L

where U;O) is the value for the isolated airfoil and uél) is a
functionLindependent of h. L

~18-~




(o) _ ;
fn fn (£,0)
An alternate form of Equation (42) is

F+F = J f (44)

with the boundary. condition

P (x,40h) = 0, (45)
whe;e
Flxoy) = [*=2— (g gy - BRED] (0,
T(E,y) [1-T(E,0)]
= [*{su(g,y) - au(g,0)}dE (46)

Equation (44) and (46) are similar to Equation (44) and (46) in
Reference 14 and the nonuniqueness analysis is then similar to

that in Reference 14.

The symmetric part of Equation (37) is

-2 2 - (n)
- (u— au®) - 1 - -2 2
u - 4= au ) .q - ¥ 5. /. JK (u”+ au“)as (47)
2 TL n=0 4 S1 Ex 1
where
z(n) _ 1 .. (n) (n) _
KEx 5 [KEX (x,y) + KEX (E,-y)] (48)
ang
Ty = 3 L ogt Molx 7 8 4 (49)
u x'y = Y
T n=-= 2% "° [(x-£)2%+ (y-nh)?)

-17-
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The asymmetric part of Equation (37) can be written as

_ E 1 = ¢ av (x-§) 4 1 - su_(y+nh)
Au -jAuu = 5 E + 5 A—dz}
n=-= 47 7% "{(x-6)%+ (y-nm)?) 2770 [ (x-g) 2+(y+nh)?)
- - x(n), _ 3
nzo fs IIK Mlx.y) Kax%x’ y}] auuds, (38)
From Equation (28) and (30)
Auu-(2n+1)Au°- fn (39)

This equation specifies Au in the flow field in terms of fn.
Since Equation (38) also specifies Au in the flow field in terms
of Auo there must be a compatibility relation.

Equation (38) can be written as

. _ 71 (n) (o5
Au - Auu = nZO 4"fslf 8K, o [auu-(2n+1)su_)ds, (40)
where
(n) _ (n) _ (n) -
AKEX [K (x,y) Ke (x,~y)] (41)

Using Equation (39), Equation (40) can be written as

1 (1-u) (o) 31 (n)
T = £, = £,- ] 20 ]g ek £,ds (42)
3 1 (l—uo) 1 n=0 4 1 EX 1
and
(o)
£
Au_ = — 1
YTl (o
1 1
Au = = {f1+ —_ ) (43)
u (uo- 1)

-16-




where
L(Vs) is an integral operator on 76

such that

1 E- 1 L(vo)(x-c)
2% L, °_[(x-€)2+ n2h2]

—dE = Vo (33)

The fact that a lifting solution to the linear problem exists
such that

fu = L(v ) (34)
is significant evidence that L(Vb) exists.
Equation (32) can be written in the form
- _ % (n) ~ _ =
0 = E Is '{KEY {au(g,n)u(E,n) (2u+1) [au _-L(v)]}ds, (35)
n=0 1 o ‘

Equation (44) is similar to Equation (30) and indicates that a
nonzero function, f,, exists, which satisfies Equation (30), and
is given by

£ = Au(E,MIU(E,n)=(2u+l) [au - L(V,)] (36)

where the right-hand side is generated from a real transonic
solution.

Now differentiate Equation (21) with respect to x, giving

- E; . E {% I Avg(x—ﬁ) 4t + %w [ Aug(y-nh) i
nN=-c ®°0 [(X—E) + (y-nh) ) ° [(x-E) "+ (Y'Nh) ]
- 1 fgIrg vles (37)

-15-
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where
J(x,0) = % (v(x,+0) + v(x-0)] (26)

and it has been noted that, because of periodicity,

Au(g,nh) = du(g,0) = Au (27)

The subscript o denotes a value on y = 0. Eguation (25) can be
written as

- P (n) -
vix,0) = - } [. [k [au(E,n)u(E,n) -~ (2n+l)au_lds (28)
n=o 51" ¥ o' 1

where S, now covers one blade gap
k(M= 1 1nl(x-£)%+ (n-nh-y)?] (29)

Equation (28) is similar to one in Reference 14 and for a lifting
solution to exist when

v(x,0) =0
a function, fn' must exist such that

_y (n) -
ngofslf Key £,dS) = 0 (30)

and

£, #0 (31)

In order to establish the existence of f, it is necessary to
write Eguation (25) as

= [au_-L(v_)] (x-E)
1 o« o) ) 1 2
0= {3 dg)} - = K u“ds (32)
nz-- 2% jo [(x_nz+ nzhzl ZnISf EY,
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Analysis of Nonunigue Solutions

A cascade is composed of an infinite number of blades or
airfoils and an integral representation of the TSD equation can
be constructed in a similar way as that for an isolated airfoil
(described in Reference 14) using the principle of
superposition. Thus,

= - (n)_ (n) _ 2
¢(x,y) = nE_. {é [avK onno 1dg} 1/2ISIKEU ds (21)
whefe
Ké“’ = %wln'(x-5)2+ (nh-y)?| (22)
and
K = $aen| (x-£)2+ (y-m)?| (23)

Differentiation of Equation (21) with respect to y gives

{]; av(E,nh) (y=-nh) de - [© du(g,nh) (x-§)

d¢)
© [(x-£)%+ (y-nh)?)

vix,y) =}
ne = [(x-£)2+ (y-nh)?]

1 2
-3 ISIKEYU ds
The operator "A" is defined as
ME(x,y) = 3 [£(x,+y) - E(x-y)] . (24)

On y = 0 the first sum yields the value %!; note that since

av(g,n) is periodic about each blade the terms for n = & N
cancel. Equation (24) can thus be written as

- T 1 (= _Au(E,o)(x-§) -1 2
vix0) = - ] 5= [o 2, 2,98~ 2 Jglkgy

na-= lix-£)2 + n%n?

ds (25)

-13-




addition to the cascade result, results for both a free air and
for a solid wall boundary condition are shown; in these cases the
far field boundary is at the same location as for the cascade
result. It can be seen that the behavior with the various
boundary conditions is different even though the boundary is at a
nominally far field location. The behavior of a nonunique
solution with decreasing gap is shown in Figure 6 and is compared
with the result for a solid wall boundary condition. The
difference is quite signifiéant. It also appears that the
cascade effect inhibits the appearance of the nonunige solution
since it does not appear for practical gap/chord ratios for this
particular section. '

The cascade code was used to investigate the behavior of the
nonunique solutions in oscillatory flows. These oscillatory
solutions were started from either a zero lift condition or a
nonunique steady state. The results are shown in Figure 7; and
it can be seen that the oscillatory perturbation is nearly
sinusoidal but is about a non zero 1lift. The section is the
NACA0012, M_ = 0.845, the pitch amplitude is 1/4° and the reduced
frequency is 1.0. It is also noted that the solution starting
from a zero lift condition is not converged but appears to be
approaching the other results. As a final result the cascade
code with the strong shock conditions was run for the same case
and the results seem to be of the unigue variety. The steady
state solution is symmetric in this case in order to provide
symmetric controls for the strong shock addition; asymmetry is
introduced by allowing a non zero mean angle of attack for the
first 200 time steps.

It is desirable to examine the behavior of these nonunique
solutions and this is done in the next section.

-12-




EL will be infinite. For the flat plate reported case by Verdon
and Caspar with M_ = 0.5, h=1, v=1 Equation (20) gives, for
p =20,

o= % 33.1°

which is the interblade phase angle for resonance found by Verdon
and Caspar. '

Results for the flat plate case, computed using Eguation
(24) and 100 blades, are shown in Figure 3. 1In this calculation
the total number of blades in the numerical computation is 13 and m =
3. A transonic case for a NACAQ0012 section, M_= 0.75, h = 2.0
is shown in Figure 4.

Nonunique Solutions

Over the last six years nonunigue solutions to the transonic

potential egquation have been found. (See References 11 and

12). In the initial cases these consisted of lifting solutions
for the flow around symmetric airfoils at zero angle of attack.
Later, nonunique solutions were found for nominally lifting
conditions. These nonunique solutions have been found for
isolated airfoils and for airfoils in wind tunnels; unsteady
solutions have also been reported in Reference 13. 1In the
present work, nonunique solutions have been found for cascade

solutions.

In order to find the nonunigue solutions the cascade code,
CTRAN, developed under previous work on the contract, was used.
Also, a variant of the code XTRAN2L, modified to give periodic
boundary conditions, was used. Only steady flows are considered
at the moment. For a gap of 50 chord lengths the range of Mach
numbers for a nonunique solution are sktown in Figure 5. 1In

-11-




15). The lift induced on a blade is proportional to the induced
upwash parameter, whi~h is given by Equation (16). Hence it
follows that

C = C

L |%|1/2eix(|n|—m)ﬁ (17)

Lo
where the relation ¥ = nh is used, and m is a given blade beyond
which Equation (16) is .a good approximation. It is assumed that
CLm is known. Note that thé actual value of v(x,y) is not given
by Equation (16) since this result only holds if there are no
other blades. However, the actual upwash will vary with y in a
form similar to Equation (16). Using Equations (14), (15) and
(24) gives

m—-1 . ®
¢ = ) ¢ e N9 4+ 1 € (E)l/2 expliK(n-m)h-ing]
L =-m+1 Ln n=m Lm n
o m,1/2 =
+ I € ()2 “expl-iK(n+m)h-ino] (18)
n=-= =m

It can be seen that the effect of the cascade blades
diminishes as n~1/2 and hence a large number of blades is
necessary in the initial computation of CLn unless the
approximation of Equation (17) is used. It is also of interest
to examine further Equation (1f{). The two infinite sums are
bounded (see Appendix 4) unless

+ Kh - o = 2pI (19)

where p is an integer. Thus for an interblade phase angle, given
by

o = + Kh - 2pl (20)

-10-




cascades are described. The rcsults did not agree very well with
those of Verdon and Caspar (Reference 9) and hence, some

examination into the causes of the discrepancy is necessary.

In Reference 10 the computed data are for a seven blade
cascade and it is. possible that this restricted number of blades
is a cause of the discrepancy. This aspect is elaborated below.

The 1ift given by the theory in Reference 1 is

c (t) = g Cp (t ~ n o) (14)
n=-o n

where Cj is the 1lift induced at blade zero by the motion of the
n

nth blade with the other blades stationary and o the interblade
phase angle.

If the flow is harmonic in time,

_ o~ iloet

CL(t) = CLe
(15)

C. (t - no) = &, elult - no

L L

n ~n

In a cascade the unsteady flow induced on blade zero by the nth
blade can be characterized by the asymptotic form of the unsteady
flow provided the nth blade is sufficiently far from blade zero
(for example several chord lengths). The asymptotic behavior for
the induced normal velocity is (Appendix 3)

. K]V
vix,y) ~ A /3. (16)
(R|y|™"%)
: - _ 2,1/2 :
where A is a complex constant and y = (1-M_ y . This result

is obtained from classic subsonic airfoil theory (see Reference
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1. JINTRODUCTION

The most common methods of predicting steady flow aero-
dynamic characteristics at transonic speeds are either the
Transonic S$mall Disturbance (TSD) theory (Ref. 1) or the
Full Potential Eguation (FPE) theory (Ref. 2). The more
accurate Euler equations solutions (Ref. 3) are expensive to
obtain, although for flows with strong shock waves such solu-
tions are essential. The FPE theory is based on the assumption
that the flow is isentropic and irrotational and generally has
a (numerically) exact treatment of wing boundary conditions.
The TSD theory is an approximation to the FPE theory and thin
wing boundary conditions are used in the solution procedure.
One of the advantages of the TSD theory is the flexibility in
deriving the approximate equation. This flexibility is generally
utilized by a choice of a transonic scale parameter.

The basic assumptions of isentropy and irrotationality in
both these theories are only valid when there are no shock
waves (Ref. 4) in the flow. Although the potential theory is
valid strictly only for shock-freé flows, the results obtained
by such a theory for flows with shock waves are sufficiently
close to experimental data for practical use, provided the shock
waves are weak. The generally accepted definition of a weak
shock is when the local Mach number just ahead of the shock is
less than 1.3. Thus, when both TSD and FPE solutions are
compared to the more realistic Euler equation solutions it is
found that the agreement is satisfactory provided that the
basic restriction to weak shock waves is not violated. The
use vf thin wing boundary conditions can also introduce errors

into the TSD solutions.




If the flow has strong shock waves, however, then there ié
considerable disagreement between both TSD and FPE solutions
and Euler equations solutions. Generally the predicted shock
location for the potential theories is much further aft than
that for the Euler equation solutions. The causes of the
error in the shock location in the steady TSD theory for two-
dimensional flow have been examined in Reference 4 where the
basic justification for a correction procedure has been derived.
The basic hypothesis of the theory is that the error in shock
location is primarily due to the stronger shock predicted by
TSD theory compared to the shock strength of the Euler equatioms.
It is also assumed that if the shock strength is suitably
corrected then the shock location should be approximately
correct. These correction theories have been applied to both
steady (Ref. 5) and unsteady (Ref. 6) solutions of the TSD
eguation and to the steady FPE.

The commonly used potential theories are based on Crocco's
theorem which states that if the entropy gradient in the flow
is negligible then an inviscid flow exists with negligible
vorticity and hence a velocity potential derived under the
assumption of zero vorticity gives a good approximation to
the flow. However, application of Crocco's therem requires that
mass, momentum and energy be conserved and since in a potential
solution with shock waves momentum is not conserved, it can
be seen that the transonic potential theory is not consistent
with its basic assumptions. However, since transonic potential
theory does give good results for flows with weak shock waves
its use can be justified on the basis of practicability alone.
A more flexible criteria for developing consistent theories is
to introduce (Ref. 4) the idea of minimizing a weighted com-
bination of source errors at the shock wave. For example, if
mass and energy are conserved through a shock then the conven-
tional potential theory results, or, if a suitable weighted sum
of the mass, momentum, and energy errors are put to 2ero then a




potential eguation with a specified shock jump results. Thus,
a potential theory with a Rankine-Hugoniot shock jump can be
obtained.

In Reference 5 the correction to the TSD eguation is
obtained by computing two steady state solutions and then
using an interpolation technique to give the reguired
solution. This technique is not really feasible for unsteady
flow since the correction procedure is required for each
time step in the two TSD solutions, with different scaling
parameters, and an interpolation scheme derived for discon-
tinous transonic flows. Examples of steady flows with
strong shocks computed with this method agree satisfactorily
with the Euler equation solutions, although the use of the
thin airfoil boundary conditions in the TS5D theory can give rise

to errors near the leading edge.

rn extension of the basic correction procecdure for unsteady
trenscnic flow is given in Reference 6 where the low freguency
theory of Ballhaus and Gocrjian (Ref. 8) is extended by adding
a formally negligible thirdé order term to the theory. The
imzrovenment in the potential theory for flows with stronc
chock waves is remarkable. The conventionel theory failed to

ive a&n answer. However, this theory still has some problems,

n

¥R

n particular, the agreement of the pressure distributions with
the results of the Euler equations is unsatisfactory ahead of
the shock wave. This is attributed to the glcbeal nature of the
streng shock correction affecting the flow ahead of the shock

wave &s well as weakening the conventional potential shock.

zZlthough all of the above theories have been vindicated
by ccmputations the number of examples computed is very small.
Before any of these theories can be used in practice with

some ccnfidence a much more detailed validation is reguired.

(93]




In the present work, therefore, the application of the strong
shock theory to unsteady flows will be tested in much creater
detaill than has been done at present.

In the present study it is found that the pressure error
in the previous study is due to one of the addéitional parameters
being unconstrained. Also, it has been found that the theory
of Reference 7 is not easily extended to unsteady flows (see the Appendix) .
The theory is extended to treat high freguency flows. The results
of the modified theory show a marked improvement over the

" earlier work of Reference 6.

2. BASIC EQUATIONS

The basic differential equation used in the present
analysis is

(a + b¢x + °¢>2<)¢’xx + ¢ + A¢xt + B¢tt =0 (1)

Yy

where a, b, ¢ are parameters to be chosen,

/3 2.2,.2/3

.2 .
A= —2M3v/: B = -M_v7/¢ (2)

where M_ is the free-stream Mach number and v is the reauced

freguency. If & is the airfoil thickness parameter, c is the

airfoil chord and U_ the free-stream velocity, then x,v,t,¢ are
C e 1/3 -1 ~2/3

normalized with respect to ¢, c/¢ / , w o, c8 / U, where o

is the oscillation fregquency.

The high frequency boundary condition is

cy(x,:O,t) = ? {(x,20,t) +

Hh

vof

= (x,20,¢t) (3)

~y
b4

where v = f(x,20,t) denotes the upper anc lower surfaces of the

f0il in motion, respectively. The far field boundary condi-

J21]
[
H

tion it a nonreflective boundary cenéition of the type ceveloped
(Ref. 9) and is further developecd by Whitlow (Ref. 10).
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In Figure (2), the steady pressure distribution ané the
. + - - .
unsteady pressure jump, (Cp"cp)"(C;"Cp)steady is shown for

a NACA 0012 airfoil at M_ = 0.8, 0 = 0.7° with a; = 0.25° andé

v = 0,6. It may be seen that tﬁé“steady state shock has moved
location considerably. There is a considerable change in the
unsteady pressure jump.

Figure (3) shows the steady and unsteady results for a
NACA 64 A006 at M, = 0.875 at d, = 0.0 with a flap deflection
of 1.0° and v = 0.470; the flap hinge is at 25% of chord.

This is case 10 from Ref. 1ll. It can be seen that while there
is a relatively small change in the steady pressure distri-
bution, there is a considerable effect in the unsteady result,

mainly due to the change in location of the shock.

In Figure (4), the results are shown for the flow around
2 NACA 64A010 airfoil at M_ = 0.796, ag = 0.0 with a pitching
armplitude of 1.01° and v = 0.404. The results are similar to
+rose of the previous example. This is case 6 of Reference 1l1.

Finally, in Figures (5) and (6}, the results for an
NLR 7301 airfoil at M, = 0.721 and ., = -0.19° are shown.
Trese are cases 8 and 13 frcm Reference 1l. There is a
double shock in this example, the first of which moves for-
ward due to the present modifications of the method for steady
f£low, although the unsteady results do not differ significantly.
In Figure (5), the airfoil is oscillating in pitch at v = 0.362
with amplitude 0.5°. The unsteady result differs considerably
from the original result. 1In Figure (6), there is a flap hinged
at 75% of chord oscillating at v = 0.362 with amplitude 1.0°.
It should be noted that this result is for the third cycle; in
the modified method the fourth cycle diverged--the reasons are
not known.

13




4.2 Unsteady Flow

The code uses the theory outlined elsewhere except
that the values of o and B are computed only on the upper and
lower surfaces of the airfoil and these are used throughout
the appropriate half plane. This device is for coding simplicity
and assumes that the unsteady effects on the shock wave can be
characterized by the behé#ior at the shock foot. It is also
possible that instabilities in the algorithm céuld arise if
a,B were varied along the shock. 2An instability did arise in
the steady flow part due to varying b,c in an injudicious

manner.

5. DISCUSSION OF RESULTS

One of the main purposes of the present work is to test
the ideas of the present theory over a range of cases. These
cases include some from Reference (10) and compare the present
method with the unmodified method.

The first case is the steady flow around & NACA 0012
section at M_ = 0.8, a = 1.25°, a case for which Euler eguation
solutions are available. The comparison is shown in
Ficure (l1). It can be seen that the present result improves the
agreement with the Euler solution by weakening the upper surface
shock strength and moving its location forward slightly ahead of
the Euler solution. A similar overcorrection is seen on the
lower surface. This may be due to the strength being below
the "cut off" strength, in this case l¢; - ¢;| = 5, and hence
+he present correction is not applied to the lower surface flow.
It should also be noted that this solution is not fully converged,
+he residual being about 9 x 10-3; however, the solution is not
obviously diverging. It should also be noted that the pressure
overshoot shown in the earlier work, Ref. 6, has been similarly

overcorrected.

12
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4. COMPUTATIONAL PROCEDURE

The theory developed in the preceding section was implemented in
the computer code XTRAN2L (Ref. 10}, as follows:

4.1 Steady Flow

When a shock appears the strength of the small disturbance
shock is computed. If.[¢;'- ¢;l is less than a specified value
then no alteration is'reQuired; at present the specified value
is 0.1. If the shock is sufficiently large, then the constant c
is ‘chosen to give a shock with the Rankine-Hugoniot shock
strength. This is accomplished using the formulae of
Eguation (16). 1Incidently, in some of the examples the exact
nonlinear formula for Mi gives an imaginary value; the code was
modified to use the linear equivalent formula

2 _ 2 . 2/3
Me = M_ + k¢ ¢x

where k is the transonic parameter. If ¢ is found to exceed
,b: /8, then c 1s kept at its previous value and b is modified
tc achieve the correct shock strencth. This recduces the

likelinood of multiple parabolic points.

In order to retain a stable algorithm the coefficients
b,c are updated only every 50 iterations. Furthermore, the
values on the upper and lower surfaces are used throughout the
respective half plane until the residual is five times the
criteria for convergence or that the number of iterations
exceeds 90% of the total maximum specified iterations. The
correct field values are then used to increase accuracy and to
zliow the intermediate field solution to reduce to its classic
form so that the boundary condition treatment is not compromised.

For each sweep over the airfoil the coefficients are updated
cnly if the shock strength exceeds by 10% the strength of 2
previous shock calculated on the same sweep. This allows for
rultiple shock waves and updates the coefficients only for the

first shock or the subseguent shocks if they are stronger by 10%

+r&r. the first. 11




f(u) = a + bu + cu2

then

of
35 < 0 for a range of u

or

b+ 2cu < 0

Let u .. be the maximum value of u in the range, then

ma
-~b cLs
C < 55— c positive (30)
max
if Uy = 4, say, then
l—gl < 1/8 (31)
12|

In practice a,b are approximately the same order of magnitude
ané hence the inequality of Equation (29) is the more restric-

tive. Thus,

c << b2/a
or
2
= l £ ] b—
Cmax = 8 a : (32)

which is used in the analysis; the value "1/8" is arbitrary.
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3. CONSTRAINTS ON THE COEFFICIENTS

There is a danger of the guadratic in Equation (1) term
having multiple roots that are physically not unreasonable but
which could destroy the algorithm stability.

The parabolic points of Egquation (1) are

N R V)
_ =b + [b® - 4ac]
u = . 2¢c (26)
1f f%1 << 1 and a ~ 0(1) then a Taylor's expansion gives
~ .2 _b,a |
u -5 or P + 5 (27)

The proper solution is the first root since it has the correct

behavior as ¢ + 0.

In order to avoid the second root it must be much larger
or smaller than the first so that it is not likely to appear in
a physically reasonable situation. 1In general, a > 0, b < 0
and |al and |b| are of similar magnitude and thus

. b _b _a
if -z > 0 then S >> 5
and (28)
b b
if -c < 0 then z << 0
Hence for the second root to be avoided, the following
constraints must be met.
tel << |b] ¢ negative
b2 (29)
c << & ¢ positive

A further constraint is that the nonlinear term should be

monotonic through a range of u. Thus, if




If these eguations are satisfied then, to first order
in shock motion, the shock will have a strength egqual to the
Rankine-Hugoniot value.

For steady flow a is kept equal to its traditional value,
and b and ¢ are altered to satisfy equation (16). There are
some constraints on b,c and these are discussed later.

For unsteady flow, ¢ is kept equal to its steady state
value and

+,+ .a s
b= bg(e /0, )7 + BXg (22),
where the subscript s denotes a steady state value. The a and

g are found by satisfying Equations (20) and (21). Thus,

90
+ 2 -1 |E +
abs/¢x -7 bs 1 2 + + cl2ey “Es
S a¢x s
= s
.
3¢ [30
<+ E 2 E +
- ¢y — | T3 9% 1N +I /{6y = Opg/2)
s &8¢ l°¢ s
X X)
s . (23)
+ éc +
= b /2 + ¢ - = co —| + A (¢, = c../2)
B ( s/ ¢’xs 3 Es] 3Xg / Xg Es
J (24)
where
2
Yot 2Mes
= -vg —_—+ ] (25)

Q>
N
7] t
—

where Me is the steady state Mach number ahead of the shock.
s




P 2 _ 1__+] < ) o2/3
o (¢x. ¢x) {m (Mg ...)[l + = CP,}/{(I + vxs)é }

(15)

The problem is now reduced to replacing o in Equation (8) with
Cp-

Following the philosphy of the earlier work, the steady-
shock strength is fixed first. Thus,

+ bt - 2) + eer’ - o vol sy =0 (16)
a (¢x oEs/ ) c(¢x ¢x s %Es ) =
s s s
This allows the constants, a, b, ¢ to be chosen.
Next, the shock strength is expanded about its steady
state value. Thus, if

F(¢;,o,is) =0 (17)

denotes Eguation (8), then

F(¢+ % ) = F(¢+ s 0) + % ef + 33 2‘CE
.xlcr s - XSI le s z_}\s a‘oE a}u{s ]
" - ec
roet - ety B EE El = (18)
X TXg lgeT  °%p a¢l
X X
or, since
+ =
F(6) , opgr 0) = O (19)
S
[ :F BOE\
2r , &F %B1 _ (20)
|8%s  °Cp ¥%s)_
f e 302
E L =0 (21)
de7 °E 36
\ st




where Mg is Mach number just upstream of the shock and is
defined as

M =(vt - x_)/a (10)

where is is the physical shock speed, U+ and a¥ are the velocity
and speed of sound just ahead of the shock, respectively. Now

2 y-1 2
wle Wt - kY02 s R wla - vtddn (11)
or
2 2 4 _E 42
M, =M s(l xs/U ) (12)

. +
where Mes is the steady Mach number with the steady value of U
replaced by its unsteady value.
In the scaled coordinate of the present problem, the

phvsical shock speed is replaced by
szUm

Hence,
2 _ 2 . + 2
M, = Mes[l - vx /(U /U,)] (13)

Returning now to Equation (9); if the small disturbance pressure

relation,

= = + +2/3
. Cp = -2(¢, +2v¢t)0 (14)

is used@, then, with the help of Eguation (8)




The shock jump relation is

£t b,.2 c 3 - dx
\a[vx] + 7[¢x] + 3 [¢>x]} [¢>y] [;_}7]5

- {A[¢x] + B[¢tl}[§§] =0 (4)
S

where [ ]} denotes a jump across the shock. Since (dx/dt)s = is'

the shock speed, is continuous through the shock, then

(0,1 = [¢, )% (5)

and hence for a normal shock Equation (4) becomes

' 2
b + - C + + - "2 - . _
{a + 5 (¢, ¢x) + 3 (¢x + g0, oy )} hS{A + Bxs} =0

(6)

Trer Zcuetlion (€) becomes

+ 2
fa v b(¢] = 0/2) +e (8] - ¢he + 02/3)

- . I . =
x  {a+ Bxs} 0 (8)

Consider now the one-dimensional Euler shock strength. The

cressure jump is given by

D _ 2y 2 ' o

o e
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APPENDIX

NOTES ON THE EXTENSION OF THE KLOPFER-NIXON
METHOD TO UNSTEADY FLOW

In Reference 7 a method is developed to modify the steady
full potential eguation to treat strong shock waves. The
results of this method agreed better with solutions of the
Euler eguations than the steady version of Reference (6) and
it is therefore instructive to sée;whether some of these
ideas can be extended to time‘dependent flows.

" Consider the two dimensional Euler eguations:

dpu,
—B—D- + l = Y
3 ox, (1)
Jpu, dpuu.
e 21 =- 8D (2)
ot oX.. X.
J 1
cH ¢H _ L
-.;? + ui -.;-x—' = 0 (3)
1
vhere
1 -

For steady isentropic flow the energy equation can be integrated

along a streamline to give

1 - -
h + > ugu; = constant = ho (5)

and the isentropic relation

P/pY = constant = k pw/dl (6)
can be used to give 1
1 TR I S A .
£ =0, 1 + I—z—- Mi [1 - lzl] /kY-l (7)
( Qe J
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This relation is then used in conjunction with the conserva-
tion of mass equation and the irrotationality eguation

= 0 :
u.—a—x— (8)

To cive an equation for ¢. In the usual case k = 1 but for the
strong shock case, k is allowed to jump at the shock wave.

For unsteady flow the energy equatlon cannot be 1ntegrated
and the necessary dens;ty/velocxtj relatlon 1s obtalned from
the momentum equation.

Consider the x momentum eguation in two dimensions

Ju usu , vav _ _ 1 3p
3 T 3w T 9y = p ox (9)

Usinc irrotationality and the isentropic relation gives

0

= {—“’- vz ey e 2 [k(o/pm>"1}= 0 (10)

(o5

.a2

-
th
—~

: is constant, then Egquation (10) reduces to the form

Q

o

G-
-+

ar
ot
H
o

(11)

LN R

Y
— (u2 + v2) + [ﬁL]
cX D)

{(y- l)o

which can be integrated to give the unsteady Bernoulli eguation.
If k is allowed to jump through the shock then the eguation is

P Yo
£ Jée . 1,2 2, L X_=2y (£
e 15e Y7 V) YT {ow]
vy-1
P
== |2 . (12)
b |pa ox
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which does not give a simple density/velocity relation.

Thus,

the application of the theory of Ref. 7 <o unsteady flow is

more difficult than first envisaged.
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OBSERVATIONS ON THE OCCURENCE OF MULTIPLE
SOLUTIONS IN TRANSONIC POTENTIAL THEORY

by
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1. INTRODUCTION

In recent years multiple solutions to the numerical
approximation to the full potential equations have appeared in
the literature (Refs. 1 and 2). 1Initially the phenomena appeared
in computations of the flow over a symmetric airfoil at zero
angles of attack whre two lifting solutions were present in
addition to the expected nonlifting solution. 1In Reference 2
some results, for a nonsymmetric airfoil, a RAE 2822 section, are
also presented. Steinhoff and Jameson (Ref. 1) suggested that
the change from one of the solutions to another is discontinuous
and noted a hysteresis effect indicating that the 1lift
coefficient (CL) depended on whether the angle of attack (a) was
increasing or decreasing. More recent work is by Salas (Ref. 2)
who has extended the computations of the flows considered by
Steinhoff and Jameson (Refs. 1) to show that it is possible to
construct a smooth CL - a curve connecting the three solutions

for a symmetric airfoil.

The investigations noted above are meticulously performed
and are essentially numerical experiments. There is a limited
amount of understanding that can be gained from such experiments
and conseguently a more analytic technique may vield additional
information. Furthermore, although the numerical results are
invaluable they do not exclude the possibility that the multiple
solutions are due to the numerical approximation to the
differential equation. The present investigation is based on the
integral equation formulation (Ref. 3) which allows some degree

of insight into the problem.

The objective of this paper is to suggest a possible reason
for the multiple solutions based on the existence of an
eigensclution in the transonic small disturbance (TSD)

equation. It is shown that a ficticious lift can he added to a




"real" solution to give a multiple of solutions. It is also
indicated that the methods used to stabilize a numerical solution

are likely to indicate the appearance of the eigensolution.
2. INTEGRAL EOQOUATION ANALYSIS

The transonic integral equation method of Reference 3 is
only applicable to the transonic small disturbance (TSD) eguation
rather than the full potential equation (FPE) that is used in the
earlier work. Consequently the first step is to reproduce
multiple solutions using the TSD equation. Once these solutions
are obtained they can be analyzed using the ideas of the

transonic integral equation thecry.
2.1 Multiple Solutions for Small Disturbance Theory

Since it is easiest at present to use the integral equation
theory to analyze small disturbance theory it is necessary to
reproduce the multiple solutions using the TSD equation. This is
achieved by usinag the computer code TSFOIL (Ref. 4) which solves
the TSD equation using the conservative Murman-Cole algorithm and
grid sequencing. The multiple solutions are found for a
symmetric airfoil at zero angle of attack by imposing a 1° angle
of attack on the coarse grid solution and then putting the angle
of attack equal to zero in the medium and fine grid operations.
It is found that such a device leads to multiple solutions over a
small range of Mach numbers. Such solutions have been found for
a 11.8% Joukowski airfoil and a NACA 0012 airfoil. As a test for
convergence, the solution for the Joukowski airfoil at

M_ = 0.85 was converged to a residual of 1079, Krupp scaling
was used in these results; the default Krupp grid is used, which
has qgrid dimensions of 77 x S6. An example of a multiple

solution is given in Fiqure 1.

e




2.2 Transonic Integral Equation Theory

Since the analysis of the multiple solutions is based on the
integral equation theory it is helpful to outline the

formulation.

For Krupp scaling the TSD equation can be written as

(1-¢x)¢xx+¢yy=0 (1)

where if ¢ is the perturbation velocity potential in a Cartesian

coordinate system (X,y) then

¢ = k/8 (2)
X = X _
y = 2v

where
k=t + w1073 (3)
T o= (3K

If u = ver VT s, then the physical perturbation velocity

components (u,v) are given by
- _ 2
u = (8%/k)u (4)
v o= (e3k)v

In the formulation of Faquation (1) the sonic line is given by
u o= ¢ = 1 {5)

The boundary conditions for Equation (1) are that
¢x’¢y + 0 on the far field, that the tangency condition




It is of interest to note that if a stabilizing term of the

type used in TSFOIL, namely is added to Equation (1), where

€¢

t is an artificial iteration tiz; and € is a parameter, then an
analysis similar to that given in this section shows that this
term will assist the formation of a nonunigue solution. This is
possibly the reason why the real solution cannot sometimes be
computed. The same effect is also present if the dissipation due
to the truncation error in the upwind difference scheme is
indicated in the analysis. 1In other words, a stable conservative
algorithm is likely to initiate the appearance of the

eigensolution g in the solution.
3. SUMMARY

The TSD equation can admit eigensolutions that satisfy all
of the bhoundary conditions generally found in such problems;
there are an infinite number of these eigensolutions. For a
nonunique solution to exist certain consistency re uirements must
be met. These eigensolutions provide lift and act like an
additional asymmetric source term in the flow field. 1If real
lift is present the fictitious component provided by the

nonunigueness appears as a simple additive term to the real

lifting component; there is no way to distinguish or uncouple the

two components in a given numerical solution.

1f, in a supercritical flow, an eigensolution does appear,
the location of the shock waves changes from their real
location. The nonuniqueness may be removed in some steady cases
by using a nonconservative/conservative algorithm which may
inhibit the appearance of such solutions. However, there is no
quarantee that this will work in all cases. This partial cure
only works for steady flows; it is possible that for unsteady
flows that a "strong shock" theory of the type advocated in

Reference 8 could remove any nonuniqueness. The (necessary)
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lower surface shock moves forward. It follows that the source
term introduced by the shock on the lower surface now acts at a
further forward location while the countering source on the upper
surface moves aft. Consequently, there is a considerable region

between the shocks for which

A[oiH(x-xsi)] <0
This counters the positive g and reduces the tendency of the
nonunigque solution to appear. However, it is necessary to point
out that the nonconservative source error must be large enough to
counter the g terms. The nonconservative algorithm only inhibits
a nonunique solution from appearing; it will not necessarily
remove an existing error. A similar analysis can be performed if
the fictitious lift is negative. This hypothesis was tested by
using the computer code TSFOIL (Ref. 4) which has both
conservative and nonconservative algorithms. A composite

algorithm, aiven by
Algorithm = XA (conservative) + (1 - XA} (nonconservative) (65)
was used., The parameter, A, was taken to be given by

A= -e|[Cp(t+at) = C(E)]] + 1 (66)

where t is the artificial iteration time and At is the iteration
step. At convergence A = 1 and the solution is conservative.

It was found that for the nonunique solutions to be avoided in a
computation of the example in Fiqure 1 e[CL(t+tAt) = CL(t)] had
to be of order unity during most of iteration. Smaller values
did not inhibit nonuniqueness. Hence it is suggested that the
"classic" deqree of nonconservative algorithm is necessary to

stop the appearance of nonunique solutions.
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It is of interest to note that the foregoing analysis is
based on the boundary conditions of Equations (6) which are in
similarity form. Hence a nonunique solution can appear for a
range of thickness and camber parameters provided the Mach number
is changed so that the similarity boundary conditions are
unchanged. This is consistent with the numerical evidence of
Salas et al. (Ref. 2).

2.7 Non-Conservative Algorithms

A non-conservative algorithm, such as that of Murman and
Cole (Ref. 7) adds source terms at the shock waves. Hence the

algorithm is solving conservatively a differential equation of

(1-¢x) ¢xx + ¢yy = [oiH(x - xsi)]x (60)

where oi(y) is a source term at the shock location xg, and
i
H ( ) is the step function. The strength of the source term is

not known explicitly in non-conservative algorithms.
If the asymmetric part of Equation (60) is taken then

A@xx + A¢yy = (Auu)x + A[oiH(x-—xSi)]x (61)
If Equation (61) is added to Equation (44) the following result

is obhtained.

(864G),  + (84+G) = (Buu) + {g + A[°1H‘x‘xsi]}x (62)

If a ficticious positive component of 1lift starts to appear
in a solution, g will change from zero to a predominantly
positive quantity, since g is equivalent to (auu). This
introduction of positive lift will change the location of the
shock waves such that an upper surface shock moves aft while a

-15-




If there is & real lift due to the boundary condition of Equation
(6) then Equation (24) gets replaced by

f*

fs IKEY[E+ - I Jdgdn (57)
1 L

where ICL is given by Equation (28) and f* is a function that

satisfies

Jo f [f* I_ )d&d 0 (58)
- n -
S1 CL

and’

f # ICL
The analysis described above is unchanged if £ is replaced
by £ + f* since f always occurs as part of the term f + f*; in
this case f + £* must satisfy Equation (57) rather than Equation
(24). Also, since f* alone will satisfy Equations (56) and (57)
there must be at least two consistent solutions for f + f* for

multiple solutions to exist.

Equation (56) can be written as

(—2
g+If

+ q)2= ULS + u

+ I, +9) - L9 4

-1 g
2 g+If f LA 47 ISIIKx"[If+g

+g+1f]2dgdn
(59)

where

*fo/(l—uo) y

1

u,, = J dg

2

LA o] (x-£)2+ y
Since the addition of the u;, term has the same effect as
introducing camber into the airfoil a nonunique solution

generally will have a different shock location than a real

solution.
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- g
a0 = —3— (53)
g+If
it also follows from Equation (53) that
Au = g/a =g + If (54)

From Equation (34)

fo

-1
o

Au =
)

c|

and if the limit as y » 0 is taken of Equation (31) and if
Equations (53) and (54) are used then

( fo )2

2
L . SR g 2
LS, 2 ‘u- 1 a $38 fslf‘(gx[(gﬂf,? + (g+I.)")dedn

(55)
where ULSo is the value of Upg at y = 0.

Since f is assumed known and ULS is known, Equation (55) is an

equation for Uo. Hence g can be found.

Using Equations (58) and (59) to eliminate u and Au in
Equation (33) it follows that a nonunique solution only exists if

there is a solution f, to the eguaticn

o _ 1, a2 1 2 1 a? 2
avi; 7 (GEr) T Vs 2 1901 an s IR ltger 2 ¢ (9t T 1dkdn

(56)
This solution must also satisfy Equation (24). For a real

nonlifting case a nonunique solution will appear if a nonzero
value of f satisfies both Equations (24) and (56).

-13-
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(49) are similar in form to Equations (1) and (6) if ¢ is
identified with ¢ + G. . The numerical algorithm will solve
Equation (48) in an identical manner to the real solution.

If there is real 1ift, that is a value that is calculated
with no eigensolutions, then the lifting solution of Equation
(38) can be added to Equation (48) to give

° * + (¢ iG =1
(¢ + A¢+G)xx (¢ - AY )yy = (50)

— * 2
3 ((u + Au+g)

]x

u
where "o denotes a real lifting component. 1In this case Au on
the right hand side of Equation (41) is identified with

*
[au + g/a]-
The boundary condition is
- * -
¢y(x,t0) + A¢y(x,i0) + Gy(x,iO) = Ys(x,iO) - A (51)

Again a ficticious lifting component G(x,y) is added to the
equation without a change in the boundary conditions. If G is
present the numerical algorithm will solve Equation (50) in an
identical manner as the real solution. It is not possible to
decouple the real and ficticious components.

In the preceeding analysis U has been assumed known. For a

solution to exist it also must be a solution of Equation (31).
Equation (37) can be written as
(dy g - - L [ /K., fdEdn =1 (52)
U N 4 Sl £x f

where g is given by Equation (46). It follows from Equation (52)
that

-12-




Now Equation (37) can be modified to give the integral equation

fo/(l-u )y
a 1 © o] 1
L=g + j —_—— 4 -~ =— I 'f[( gdkEdn (43)
3 2% (x—5)2+ y2 4 S1 £x

which can be written in differential form as

Gex * Cyy = 9y (44)
where
Glx,y) = [*—L1 g (g,y) dt (45)
U(EIY)
and
ale,y) = £(g,y) ~ —L&e0) (46)
l1-u(g,0)

with tre boundary condition
Gy(x,tO) = 0 (47)
In the far field G behaves like a point vortex.

If G{x,y) is identified with a lifting term A¢ then
Equations (41) and (44) can be added to give

- — _ 1 = 2
(¢ + G)xx+ (¢ + G)yy =3 [u + g] x (48)
u
- _1 [] V! -
¢y(x,t0) + Gy(x,tO) =3 [Ys(x,+0) Yo (%, 0)] (49)

where Au on the right hand side of Eguation (41) has been
identified as gvu. Thus a ficticious value, G, can be added to
a purely symmetric problem, denoted by ¢, to give lift; the
boundary conditions are not affected. This is the mechanism of
the appearance of the nonunique solutions. FEquations (48) and

-11-




(32). Hence for a nonunique solution to exist Au, as defined by
Equation (35) must be compatible with Equation (32).

Substitution of Eguation (33) into Equation (32) gives
= f - 1
su-du_ = £ - 4= fslfxgxf dedn (36)

or, using Equations (34), (35)

[f - fo %%:glg = f - & fslngxf dedn (37)
-uo

el [~

The basic differential equation, (1), can be decoupled into

symmetric and asymmetric parts. The asymmetric part is
bo ., * A¢yy = (Auu)x (38)
where

aex,y) = 3 [8(x,y) = $(x,-y)] (39)

the boundary condition is

- ___ __];, 1 ' -
A¢y(x,o) = -A + 5 [Ys(x,+0) + Ys(x, 0)] (40)
The symmetric part is
- - _ 1 (=2 2
dx T %x T 2 (u™+ su™] (41)
with
iy _l ] - \ -
¢y(x,o) =3 [Ys(x,+0) Yl (X, 0)] (42)

-]10-




Equation (10) can be manipulated to give the following symmetric
and asymmetric parts.

Tix,y) - & [02(x,y) + aul(x,y)) =u, -+ [ [k, (9%(g,n) (31)
2 Ls 4n s1 EX
+au?(€,n))dedn
pulx,y) = Bux,YU(xy) = = 4= [0 fkg uPiem) - uite,m)  (32)

1
-2A8u(g,0)]1dedn

These equations will bhe used in the following sections.
2.6 Analysis of Multiple Solutions

If in Fquation (24), f(&,n) is known then Eguation (23)

agives
L w?ie,m = ul(g,m)-26u(g,00) = aule,MT(E, ) - aulg,0) -£(&,n)
(33)

If Uu(&,n) is known then this is an equation for Au(f,n) in the

flow field and gives

au = —£O (34)
u -1
o
where
fo = £f(g,0) etc.:
also
f+ Au
pu = —2 =1 e _fO (35)
u u 1—uo

In the transonic solution Equation (16) only gives the value of
au(g,0) or Auo, the value of Au(x,y) being found from Equation




where for 0 ¢ x <1

—

A, 5 [Yl(E) + Y'(E)]
1 -x,1/2,1 + 2 s s £
ICL(X) ( X ) fo (x - ) (l - £

—

A

(28)

and

I (x) =0; x <0, x> 1;
c
L

u(g,n) is a transonic solution subject to the arbitrary boundary
conditions in Equation (6). Since the boundary condition is
arbitrary, and therefore an infinite number of boundary
conditions can be applied, it follows that an infinite number of
solutions u{g,n) exist.

Equation (28) is identical in form to Equation (24) with
f(g,n) given by.

£(g,n) = uPle,n) - uP(g,~n) - 28u(g) -2I_ (§) # 0 (29)
L

Since there are an infinite number of transonic solutions it
follows that there are an infinite number of eigensolutions
£(g,n). A justification of a nonzero f(&,n) is given in the
Appendix.

2.5 Symmetric and Antisymmetric Integral Equations

Let u (&,n) and Au(g,n) be defined by

u (&£,n) (u(g,n) + ulg,-n)) (30a)

N =

[U(g,n) + ulg,-n)) (30b)

N —

au(g,n)




Je ke tu?(g,m) = v (g, n) - 28u(e)lagdn = 0 (23)

where Sy covers half of the domain S. Equation (23) can be

written in the more compact form.

fsflkgyf(a,n)didn =0 (24)
where
£(g,n) = [W2(E,m) = u?(E,-n) = 28u(§)]
One solution of this integral equation is
f(g/n) =0 (25)

which 1s the symmetric solution for the airfoil problem. A
nonsymmetric solution can be obtained if there is one or more
functions f(&,n) = / 0 that satisfy Equation (24). If there are
such solutions then a multiple solution in transonic flow can

exist if the eqguation

> wPg,m) = ui(g,-n) - 28u(8)] = £(£,n) (26)

has a real solution for u(&,n).

2.4 Existence and Nature of Eigensolutions

It is desirable to determine the existence and the nature of
the eigensolutions, f(&,n) of Eguation (24). Consider Equations
(16) and (18). Using the inversion procedure that 1leads to
Equation (20), Equations (16), (18) can be written in the form

fslfKEy[(uz(E,n)—uz(E,-n) -28u(6) -21; (£)1den = 0 (27)

-7




This integral equation is valid for shock waves normal to
the freestream; if the shocks are not normal to the freestream a
modified integral eguation is used (Ref. 6). Since the
formulation changes are negligible the above set of equations

will be used in the subseguent discussions for clarity.

In the solution of the integral equations the circulation is
given by Equation (16) although it should be emphasized that
Equations (10) and (16) are not independent. The solution of
Equation (16) is found by inverting the integral equation to give

_ I (¢§)
1 x)1/2 fl C ( 3 )1/2d£

2
Au”(x) _ -1
- S - (x,0) - 2 (S ox -t \T-¢%

fu(x) 2 LA

(20)

where u;a is the antisymmetric solution of Equation (1) without

the nonlinear terms and is given by

- 1
1 - x) 1/2/] A+ 3
X (o]

[Ys(gr+o) +Yé(5!'0)] (
(x ~ £) 1 - ¢

1
7 ¢

ULA(X,O) =

The inversion procedure invokes the Kutta condition.

2.3 Application of the Integral Equations to Multiple

Solutions

Consider for the moment the case of a symmetric airfoil at

zero angle of attack in this case

v >l

0 (22)

s(x +0) = —Ys(x,-O)

and the left hand side of Equation (16) is zero. A manipulation

of the integrals in Equation (16) leads to the eguation




where

sufg) = [u(g,+0) = u(g,-0)}/2 (13)

The Kernel function K({(x,g;y,n) is given by

K(x,6:y,n) =2 In [x - £)%+ (y - m?) (14)
The integral I is given by

I.(u) = - = [ K, (x,E:y,n)u’(E,n)dS (15)

T 47 ‘S’ TEx rerxr '

The domain S is shown in Figure 2.

If y =+ 0, Equation (10) gives (see Ref. 5) only the
symmetric part of the solution and the antisymmetric part is

aiven by

11 [au(e) - aw?ce)/2)
n (o]

B 4 2(YI(x,£0) + YI(x,-0)]= - S dg + I_(x)

(16)

where
su?(e) = 1uleg,+0) - w?(g,-0)1/2 (17)

and

1,00 = - g5 Jgf Ky txogi0,m) ¥, m = w?(e))as (18)

where
(19)

uZ(g,+0), n > 0

A2 -
() = uw2(g,-0), n<oO

u




is satisfied and that the Kutta condition of zero velocity jump
at the trailing edge and on the wake is satisfied. 1In Eqguation
(6)

Y_(x,£0) = k/s3?s (x,£0) (7)

where y = Ys(x,iO) denotes the geometry of the airfoil on its

upper and lower surfaces, respectively. A is given by
< _ 3
A =k/B a (8)

where a is the angle of attack, although it should he noted that

in the formulation used in TSFOIL

A = k/BBMm-l/d'a (9)

The basic idea of the integral equation method is to use Green's
theorem to write the differential equation, Equation (1), and its
associated boundary conditions in integral form. A detailed

description of the method is given in Reference 5.
For v # 0 the integral equation is given by
2
u - u /2 =u + u + IT(u) (10)

LS LA

where

|b—‘

_ 1., IV .
U g(xyy) = IOIYS(5,+0> Yl(g,-0)] K (x,&5y,0)d¢ (11)

N

T
and is the solution of Equation (1) without the nonlinear terms,
1
m

_ 1 )
upa(x,y) = fo Au (E)Kn(x,E,Y:O)dE (12)




stability terms used in algorithms tend to initiate the
appearance of eigensolutions thus making the computations of a

real solution different.

Since the behavior of the nonunique solutions is identical
to that of che real solution the question arises as to whether
these solutions are physically realizable. An analysis of the
Navier-Stokes -r, possibly, the Euler equations is necessary to

determine this.

ACKKNOWLEDGFEMENTS

Research sponsored by the Air Force Office of Scientific
Research (AFSC) under contract F49620-79-C-0054 and by the Office
of Naval Research under contract N(00014-83-C-0056.

-18-




REFERENCES

Steinhoff, J. S. and Jameson, A.: Multiple Solutions of the
Transonic Potential Flow Equation. AIAA Journal, Vol. 20,
No. 11, 1982.

Salas, M.D., Gumbert, C. R,, and Turkel, E.: Nonunique
Solutions to the Transonic Potential Flow Equation. AIAA
Journal, Vol. 22, No. 1, 1984.

Nixon, D.: Calculation of Transonic Flows Using an Extended
Integral Equation Method. AIAA Journal, Vol. 15, No. 3,
1977.

Stahara, S. S.: Operational Manual for Two Dimensional
Transonic Code TSFOIL. NASA CR 3064, 1978.

Nixon, D.: Calculation of Transonic Flows Using the Integral
Equation Method. Ph.D. Thesis, University of London,
England, 1976.

Nixon, D.: The Transonic Integral Equation Method with
Curved Shock Waves. Acta Mechanica, Vol. 32/1-3, 1979.

Murman, E. M. and Cole, J. D.: Calculation of Plane Steady
Transonic Flow. AIAA Journal, Vol. 9, No. 1, 1971.

Klopfer, G. H. and Nixon, D.: Non-Isentronic Potential

Formulation for Transonic Flows. ATIAA Journal, Vol. 22,
No. 6, 1984.

-19-




APPENDIX

Further Comments On The Nature of Eigensolutions

It is possible that the only sclution to Equation (27) is

f£(g,n) = 0 (Al)
In this case
AU U - Auo - Ic =0 (A2)
L
and
I
su_ = =& (A3)
u -1
o
bu = - T — /u (A4)
L u -1

If Egquation (A2) is substituted into Equation (32) it follows
that

L T (8 v

o 5 dg {(Ad)

AU - AU U = 1 [
T 2
(x-£)"+ vy
The right-hand side of equation (A5) can be recognized as
AuL, the linear wvalue of au in the flow field. Hence Equation

(AS5) becomes

su (1-u) = AuL (A6)
It can be seen that as U + 1 Au becomes infinite which will
give an expansion shock. Consequently, Equation (Al) cannot be
the correct solution of Equation (32); a nonzero value of

f(£,n) must exist.
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Airfoil

Figure 2,- Domain of integration S.
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APPENDIX 3

Velocity Induced by a Moving Blade

The object is to estimate the induced upwash at some station
y due to the oscillatory motion of a blade at y = 0. It is
assumed that y is sufficiently far from the oscillating blade
that linear theory can apply.

From classic subsonic theory the velocity potential in the
far field is given by (see Reference 15)

- 2
- A . L iMTax
$(x,y) = exp[-i(Kr--)]e ‘= (1)
(kr) /2 4
where
r = (x2+ §2)172 (2)
and
M
kK= —=3, 7= a-w)% (3)
1-M2

Far from the moving blade x can be taken as zero and, on

differentiation with respect to vy,

- in/4 . .-
- A e -1 iK iKy
v(o,y) = ——— - { = -~ —¥ /%€ (4)
(I_ME)I/Z K1/2 2y3/2 yl/i
as y + », v(o,y) can be approximated by
= 1/2 .~ .
— -1iA K iKy in/4
v(io,wy) = ———— —i,o © e (5)
(1-M3)1/2 7172
e—iKy
= A (6)
=1/2
y

where A is a complex constant.
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APPENDIX 4

by Alfred Ayoub

Convergence of the Series

© eina
n=1 n1:2
@ glina
The convergence of the series ne1 n1/2 is due primarily to
the cancellation effects provided by the te{gqelnu, as the series
e

o~

1/2 is not absolutely

1
) = . .
n1/2 is divergent and therefore n=1 n

n=1

convergent.
For values of . for Yggch an integer p exists such that

pa = 7w, the series nzl n1/2 can be reduced to an alternating
series by grouping all consecutive terms of the same sign; the
series that follows has monotonically decreasing terms and is

therefore convergent.

While a somewhat similar approach can be followed for an
arbitrary a, the procedure tends to become aquite complex. The

following proof of convergence on the other hand is more direct

and exploits equally well the alternating character of ell®,
@ eina ia eiza eina
)) = e 4+ == + ... + + ...
nei n1/2 21/2 n1/2
1 ia 1 1 ia i2a
= (1 ;T/Z)e + (;T/Z - ;T/Z) (e” "+ e )

+ ... + € Yy + ...
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The series on the right hand side of the above identity is

absolutely convergent since:

X . ina
1 1 ia ina 1
|t - ] e+ ..+ et | < ,
n1/2 (n+1)1/2 2n3/2 ia
) 1 is convergent (by Cauchy's integral test)
£ 3/2
n=1 2n
l—eina sinzna/z
and el By yoran
l-e sin“a/2
< ——-%—~— finite and independent of M
sin“a/2 for a # O, 27,44
It follows that the series
o 1 1 ia ina
11 - ] (e + L0+ e )
n=]1 nl/2 (n+1)l/2
o eincx
is convergent and hence | 173 is convergent.
n=1 n

It is interesting to note that the same proof above applies
o o
to all series of the form } a b where ) b_ is bounded but not
n=1 n=1
necessarily convergent and the terms a, are all positive or all

tends to zero monotonically as l? where r is any
n

negative and ap

positive exponent.

25—







